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Abstract 

We calculate limits to the properties of massive, unstable neutrinos using 
data from gamma-ray detectors on the Pioneer Venus Orbiter Satellite; a 
massive neutrino emitted from SN1987A that decayed in flight and produced 
gamma rays would be detectable by this instruments. The lack of such a signal 
allows us to constrain the branching ratio to photons (B,), mass (m,), and 
radiative lifetime (rT = T/&). For low mass (m < T N 8 MeV) neutrinos 
decaying u i u’y, B, < 3 x lo-‘, for m,r 5 10s keV set, and B7 < 6 x 

lo-“m,r/ keV set for myT 2 106 keV set; limits for high-mass neutrinos 
are somewhat weaker due to Boltzmann suppression. We also calculate limits 
for decays that produce gamma rays through the bremsstrahlung channel, 
Y -+ Je+e-7. In the CaSe that neutrino mass states are nearly degenerate, 
6mz/mz << 1, our limits for the mode Y - ~‘7 become more stringent by 
a factor of 6m2/m 2, because more of the decay photons are shifted into the 
PVO detector energy window. 

1. INTRODUCTION 

The occurrence of Supernova 1987A in the Large Magellanic Cloud has proven to be 
among the most fruitful experiments in the heavenly laboratory for confirming “known= 
physics and constraining new physics. Aside from its obvious impact upon the study of 
the late stages of stellar evolution in general and upon supernova physics in particular, 
models for SN1987A have become a test bed for the study of the couplings of light particles - 

(neutrinos, axions) to ordinary matter [l]. In this work, we discuss limits on the properties 
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. 
of neutrinos independent of a specific model for the supernova based upon the emission of 
thermal neutrinos from the hot nascent neutron star. 

When a supernova occurs, the bulk of the binding energy of the progenitor star (- 
3 x 10s3 erg) is released in neutrinos, as predicted by theory and confirmed by the observation 
of a neutrino burst from SN1987A, with a characteristic temperature of about TV M 4.5 MeV 
(for low-mass electron neutrinos; other species are predicted to have a higher temperature, 
T 2: 8 MeV, because of their different coupling to the prevalent electrons [7,8]). If at least 
one species of neutrinos is unstable and couples to the photon, then some of these neutrinos 
will decay to photons en route, which are potentially detectable as MeV gamma rays. At 
the time of the supernova burst’s arrival at earth and environs, there were several satellites 
operating in the solar system capable of detecting the decay photons in the course of their 
watch for gamma-ray bursts. Analyses of the data from one of these detectors, on board the 
Solar Max Mission (SMM) satellite, has already been presented [2]. Here, we examine the 
data from the Gamma Burst Detector on the Pioneer Venus Orbiter (PVO). While the PVO 
detector was smaller, and its energy window is not well-matched to that of the supernova 
neutrinos, it had 4n acceptance and was in an environment free of the Earth’s radiation belts 

(leading to lower backgrounds). In addition, more high quality data is available (> 8000 set 
vs. 10 set for SMM). 

The paper is organized as follows. In the next section an exact formula for the expected 
gamma-ray flux is derived and important approximations are developed. In Section III, the 
PVO data are discussed and rigorous limits are derived in the simplest regime. The next 

four sections build upon these results, expanding to more complicated regimes. The final 
section is a brief summary. 

II. GAMMA-RAY SIGNAL 

We can write the expected fluence of gamma rays from decaying neutrinos with mass m, 
and mean lifetime r as [3] _ 

where B, is the fraction of decays that produce a gamma ray. The first factor is the overall 
flux of neutrinos from a supernova at a distance D. L#(E) is the differential number flux of 
neutrinos of energy E, so ET = JdE EL# is the total luminosity in neutrinos. The second 

factor gives the fraction that decay into a “lab-frame” angle arccos p. The third factor gives 
the fraction that decay at time td. Finally, the delta function selects the photons with a 
given td, E, p that arrive at a time t after the arrival of massless neutrinos at the detector. 
The Lorentz factor is 7 = E/m, and the speed u = dw. 

The function n(p) depends on the distribution of daughter photons in the neutrino rest 

frame, and therefore on the particular decay channel involved. First, we consider the two- 
body decay, Y + ~‘7. Because the neutrino is a spin-l/2 particle, and the photon a spin-l 
particle, this reaction can proceed in one of two ways: with the helicity of the daughter 

(t&/D)’ (1 - /.t2) - I}]) dt. 

2 



neutrino either parallel or amiparallel the initial helicity. From quantum mechanics, then, 
the distribution of the photon in the rest frame of the parent will be proportional to either 

(1 f ~)/2, where Jt is th e cosine of the rest-frame angle between the directions of the parent 

neutrino and the photon. Transforming into the lab frame gives us the distribution n(p). 
Note that we have assumed the neutrinos are ejected from the supernova in an instantaneous 
burst; as long as the actual duration of the pulse is small compared to the timing resolution 

of the detector, which is the case, this is a good approximation. 
Because we are not interested in the decay angle, but rather the photon energy, we write 

44dP = f(E, Wk, w h ere k is the gamma-ray energy, related to the decay angle by 

‘=J+& ‘-2;k ’ ( -1 (2) 

This gives 

f(E, k) = (Et,z (Ev =I= E f 2k) 7 (3) 

for each of the helicity possibilities. (For reference, an isotropic decay would give f(E, k) = 
l/(Eu) = l/p, where p is the neutrino momentum.) For low-mass neutrinos with v M 1, 

2k/E2 no flip 
2(E - k)/E2 flip . (4) 
l/E isotropic 

Each of these should be multiplied by a Heaviside function O(E - Ic) to require that the 
daughter photon be less energetic than the parent. Further, we require that the decay does 
not occur inside of the progenitor envelope which would considerably alter the energetics of 
the explosion and lead to an independent constraint which is important for short lifetimes 

PI- 
The factor inside the delta function is especially complicated. This occurs because at 

any given time, the detector is receiving photons from neutrinos that have decayed in a 
complicated shape, approximately an ellipsoid with the supernova at one focus and the 
detector at another, further complicated by the speed t, < 1 of the massive neutrinos. This 
includes photons that have left the supernova pointing far away from the detector but have 
decayed at large angles toward the detector. Obviously, for low mass neutrinos which leave 
the supernova at highly relativistic speeds, the fraction which take such a path is very small. 

To simplify this expression, we shall require that td < D N 5 x 10” set-most of the 
neutrinos decay well before they reach the earth. Otherwise, the flux is greatly reduced and 
the limits are correspondingly weaker; the neutrinos may typically take a path that causes 
them to decay well after our observations end. In Sec. VII we discuss long lifetimes. 

In this limit, the delta function becomes simply 6 (t - td(l - VP)) = (2Tk/m)S(td - 
2ykt/m), and we can perform the integral over t,~: 

dN = W#W 4nD2 f (E, k)--&e-2ktimv7 dt dE dk 
v 
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(Similar expressions have also been derived in [4,5]:‘) We shall assume that the neutrino- 
number luminosity is given by a zero-chemical-potential Fermi-Dirac distribution with known 
temperature and total neutrino energy, a reasonable approximation [8]. For now, we will 

present results for low-mass neutrinos (i.e., m, < T,), 

L&!+-n, = 0) = ‘20% 
E2 

?‘a4 T4 1 + @IT, Y 

where ET N 10s3 erg is the total energy in one species of massless neutrinos. We treat the 
case m, 2 T, in Sec. V below. 

Finally, we can integrate the above expression over all neutrino energies E and over one 
time bin from t to t + 6t to get an expression for the spectrum of photons incident on the 
detector during that time interval. For m, < T,, 

+(k, t) = lt+6t &dt = 
B-, 240 ET -- -h( k.Ty)e-2kt/myT (1 _ e--2k6t/mvr) . 

4nD2 7~4 T,” (7) 

In this expression, the function h(k/T,) results from the integral over the neutrino energies. 
It is of order unity for the paramater ranges of interest, and it is largest in the case of “no 
flip,” which we will assume from now on since it gives the most conservative estimates of 
the parameters. In that case, it is given by h(y) = y ln(1 + e-y). 

Although this signal depends nonlinearly on the parameter mvr, the expression simplifies 
when m,r is much greater or less than kt or k&t, where k is a typical photon energy, giving 

d(U) = 
B-, 240 ET w m,r << kSt 

---h(k’Tv) ’ { 2kbi/rn,T, m,r > kt 4~02 7x4 T, a (8) 

In the former case of small mvT, there is no appreciable relativistic delay before the decay 

of the neutrinos, so essentially all of the daughter photons arrive in the first time bin after 
the supernova. In the case of large mvT, the flux is essentially constant over the time of the 
observations, so the signal is proportional to the width of the time bin. Note that only in 
the latter case does the fluence actually depend on the value of myr. 

In order to calculate the expected signal from the theoretical spectrum, we must fold 
that spectrum with the appropriate response function. The signal expecied in the ith energy 
channel is 

S;(t) = JdkR(k)d(k,t) = CRij+j(t) 
j 

(9) 

where R;j is the response of detector i in energy bin kj, and 4j(t) is the theoretical spec- 
trum averaged over energy bin j at time (or time bin) t. This, combined with a separate 
observation of the background rate in each of the four detectors, provides the theoretical 
signal to be compared with the observations. 

III. GAMMA-RAY DATA AND ANALYSIS 

To obtain our limits we use data from the supernova with data from Pioneer Venus _ 
Orbiter Gamma Burst Detector (PVO GBD) [6], 1 UC I y in operation in February, 1987. k’l 
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The GBD has four energy channels, roughly 100 - 200 keV, 200 - 400 keV, 500 - 1000 keV, 
and 1 - 3 MeV towards the direction of the supernova, which was propitiously directly 
overhead at the time, giving the maximum effective area. We have data for about 1500 set 
prior to the supernova lights arrival at Venus (for calculating the background), and for 8000 
set after, for time bins of either 12 or 16 set in duration. We show the data in Figure 1. 
We have verified that there is no clear signal in any of the four channels; further, the data 
is consistent with a constant Poisson rate in each detector. 

To calculate limits on our parameters B, and muT, we use the folded spectrum S;(t) 
and our measurement of the background rate (observed for a length of time tb) in each 
detector to construct a likelihood function given the observed gamma-ray counts in each 
detector. We assume that the folded spectrum S;(t) g ives the mean of a Poisson process 
governing the detected number of counts, and that the rates for each detector are high 
enough to approximate this by an appropriate Normal distribution, for ease of calculation 
(in the 1 - 3 MeV bin, with the lowest fluence, there are approximately 40 counts per bin). 
This gives 

L(0) = n N(Dij; biStj + Sij(O), 0;) 

where 

N(x; P,u’) = J&ew - [-;‘” --;“I (11) 

gives the Normal distribution, bi is the background rate in detector i (observed for a time 

tb), 6tj is the length of time bin j, and Dij, Sij are, respectively, the observed and theoretical 
signal in those time bins, where the latter is calculated with the set of parameters represented 
by 0. Finally, the variance is given by U: = Sij + bi6tj( 1 + Stj/tb), the sum of the theoretical 
variance of the signal and that due to the background rate (including a small contribution 
reflecting the uncertainty in that rate; this latter effect is somewhat more difficult to include 
if a Poisson distribution is explicitly used but is in any case negligeable). We define a x2 
statistic, 

x2 E -2lnL+const = 1 lna;2j + 
S;?i (bibtj - Dij) Sij + (Dij - bi&tj)’ (12) 

ij 
2+2 

‘f 
Ui’j u$ 1 

Note that the model is nonlinear, and the variance u~j depends on the model parameters, 
so we have defined this quantity including the In aij term and that the usual x2 distribution 
does not apply; instead we must apply Bayes’ theorem and integrate over the likelihood to 

determine confidence intervals on our parameters. 
Because of the two terms contributing to the variance, the form of x2 depends on which 

dominates. For Sij >> bi6tj, U$ z Sij, and the S;‘~/U;‘, term dominates, SO x2 - C Sij- When 
the neutrino signal is small, the background contribution dominates, and x2 N const. These 
regimes are shown in Figure 2, where we plot x2 as a function of m,r for several values of 
B,. We have used a neutrino temperature of 8 MeV, appropriate for mu and tau neutrinos. 

Immediately, we see the character of the limits on the parameters. For myr 5 lo7 keV set, - 
x2 a B7; in this regime only the data from the first time bin after the supernova contributes- 
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Then x2 a B,/m,T for m,T/B -, 5 1013 keV set; now, the full data set provides information. 
Finally, x2 = const for m,-r/B, 2 1013 keV s ec; in this regime the background dominates over 
the theoretical signal. Note that this latter area of parameter space provides the “maximum 
likelihood” (or x2 minimum); there is no neutrino signal and we calculate only limits on 
parameters. In fact, there is a slight deficit of counts with respect to the background 
calculated from the time before the supernova; otherwise we might expect to see a weak 
maximum likelihood somewhere in the large-m,r regime. 

In Figure 3, we show a single contour of x2 in the m,7-B7 plain. From a “Bayesian” 
viewpoint, this figure represents the the complete inference from the data; we obviously 
would prefer to quote limits on the parameter space. 

Because x2 is constant for both large and small values of the parameters mvr, we must be 
careful in normalizing our probabilities. Without any other information to guide us, we might 
expect the appropriate prior to use would be either ~(0) a const or p(0) a l/0 corresponding 
to constant probability per linear and logarithmic interval, respectively; however, neither of 
these choices converge when integrated out to infinity multiplied by a constant likelihood. 
These priors, when normalized, assign a vanishing weight to any finite region of parameter 

space; usually, x2 goes to infinity like the square of some parameter in a linear gaussian 
model with independent errors, so the wings are automatically disfavored regardless of the 

prior. 
To get meaningful results in this case we must make sure that the interesting regime 

of -6 5 log B, < 0, 5 5 log(m,r/ keV set) 5 13 is given finite prior weight. This 

corresponds to choosing a prior with some cutoff outside of this region, and will result in 
a limit corresponding to a value of x2 somewhere along the slope between its small and 
large values. To connect with other analyses, we will adopt the following “frequentist” 
procedure. We will assume that x2 is distributed in a x2 distribution considering the data 
as a frequentist random variable. We have 550 time bins and four detectors, so there 
are 2200 degrees of freedom. For this distribution, a one-sigma fluctuation corresponds to 

Ax* = 2230, a three-sigma (or 99%) fluctuation to Ax2 = 2357; we choose the latter as our 
limit; from the shape of the likelihood function it is clear that any comparable Ax2 will give 
similar bounds. We also note that a signal in the small-m,r regime may not be detectable 
with this algorithm; the absence of a local minimum in that region, however, implies that 
this should not be a significant worry. (We have also used a x2 defined rigorously from the 
true Poisson distribution, which effects the limits on the parameters by somewhat under one 
order of magnitude throughout.) The allowed region is shown in Figure 3. It corresponds to 

B7 < 3 x 1O-7 rn,T 5 lo6 keV set (13) 

By < 2 x lo-i3 k;;ec rn,T 2 lo6 keV sec. (14 

for neutrinos with a temperature of 8 MeV. (Th e imits scale roughly as T-‘.) The latter 1’ 

bound corresponds to rn,T, > 5 x 10 l2 keV sec. This is less restrictive than the limits of 

Oberauer et al. [4], due to the fact that the PVO GBD could only detect gamma rays with 
energies below 3 MeV, compared to 25 MeV for the SMM satellite. However, we believe this 
analysis to be more rigorous and the PVO data to be of higher quality. 
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IV. OTHER DECAY MODES 

So far we have considered only photons produced from the simplest radiative decay of 
a massive neutrino species: u t ~‘7, but many other channels are possible. For these 
reactions, where the rest-frame photon energy is no longer given by the simple & = mv/2, 
we must allow for a distribution of decay products: f (z, ,ii)didp gives the fraction of photons 
produced with rest-frame energy k: into angle ji = cos 8. Then, the final spectrum is given 

bY 

dN 1 B, 
- = ---JdE L#(E)/dj? f 
dkdt 47rD2 r 

where we have still assumed that the decays occur near the supernova, and the integral is 

taken from k to m. (We discuss the case of large masses, m, 2 TV in Sec. V below.) For 
the appropriate choice of f (k, ji) a S( i - mv/2) fi (ji), we reproduce the earlier 2-body decay 
formula, Eq. (7). 

In particular, we consider the bremsstrahlung process, v + v’e+e-7, where typically 
v = VT) v’ = v,. Because this is no longer a two-body decay, the spectrum in angle and 
energy of the daughter photons is considerably more complicated, and there has been no 
exact calculation performed. Following Oberauer et al. [4], we make several simplifying 
assumptions. First, we assume isotropy of the photons in the rest frame of the neutrinos; 
this is reasonable if the helicity states of the parent neutrinos are produced in equal num- 

bers. This gives f(k,fi) = f(g)/2 (which still implicitly depends on F through the Lorentz 
transformation to the lab frame). 

Up to factors of order unity, we assume after Oberauer et al. that the bremsstrahlung 
energy spectrum is given by 

dl& cr ro (Y 1 -N--=-- 
dk -ak ‘IT kr, (16) 

where Is and 7, refer to the process without a daughter photon: v + v’e+e-, allowing us to 
absorb a branching ratio factor into 7, = r/B,. Now, we can write the gamma-ray flux as 

dN 1 lcr -=--- 
dkdt 47rD* m,r, T 

1 dE L#(E) f /_” $ (1 + VP) e-7(1+uP)t/7 
1 

1 
=- L?/dE L#(E)f k (?-$)2eu(~ - l)~~‘1’vJEt’mr7 

47;D2 m,r, r (17) 
u=-(I-v)Et/mys 

If we assume that 7t << 7, the angular average becomes unity. (A Maxwell-Boltzmann 
distribution for L#(E) then reproduces the expression of Eqs. (6-7) of Oberauer et al. [4]) 
With the additional assumption that a negligible fraction of the decays occur inside of the 
progenitor and that detected gamma rays have energies k << T (i.e., EG << T), we get the 
simple formula 

dN ET 1 crl - = ---- 
dkdt 4nD2 m,r, r k (18) - 
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where ET again gives the total energy in the decaying neutrino species. Note that this 

expression is correct for any form of L#( E). At early times the flux is constant, although 
there will be an exponential decay for -yt 2 T. In the twobody case, the timescale for 
gamma-ray detection is set by m,T/k; in the bremsstrahlung case, by m,r/E N m,r/T. 

Assuming that most neutrinos will have E N T, the assumptions we have made require 
that t/T << m,/T < 1 for this formula to hold. Note that this is a restriction on the param- 

eter space of m, and r, since we have approximately 8000 set of data, and the temperature 
is of order 8 MeV for any neutrino species. 

Because the flux is proportional to l/m,r,, we will be able to put limits on the combi- 
nation m,r, = m,r/B,. Moreover, because the dependence is the same as the large-m,7 
regime of the 2-body decay case (cf. Eq. (8)), the probability density will be of the same 
form. When the variance is dominated by the signal, x2 - CS;j a l/m,r,; when it is 
dominated by the background, x2 - const (the same constant as in the 2-body case). The 
crossover occurs at m,7, sz 10” keV sec. The value of x2 for this model is shown in Figure 4. 
Using the same quasi-frequentist definition of a 99% confidence level gives limits of 

m,r, > 1.5 x 101’ keV set or 5 < 7 x lo-l3 keV-’ see-’ . 
Y 

Because the bremsstrahlung spectrum peaks at a lower energy, and due to the long time 
baseline of the PVO data, this limit is comparable to other SN1987A limits for this decay 
channel [2,4], and we believe more reliable, due to the higher-quality data set. 

V. VERY MASSIVE NEUTRINOS 

All of these expressions are considerable more complicated in the case m 2 T. We 
will still assume a zero-chemical-potential FD distribution, this time applying to massive 
particles: 

120 l!+ . 
L#(E,m,) = -- 

EdE’ + rnt 

7w4 374’ (my/Tv) 1 + ,E/T, ’ 
Y 

with a “suppression factor,” j(x), along with the requirement that E > my. The factor 
j(z) is just the usual Boltzmann suppression (j(x) a z3/2e-z, for x >> 1); we use an 
approximation that is good for m/T 5 few, j(x) N exp(-0.15~‘). (Sigl & Turner [7] have 
calculated the effect of the changing neutrinosphere temperature and radius on this naive 

expectation; the effect is small for mu ,$ 40 MeV, at least for r 2 lo-’ sec.) For low-mass 
neutrinos we assumed k > m,; now, we can only integrate over neutrino energies greater 
than max(m,, k). In this expression, ET 21 10s3 erg remains the total energy for the low-mass 
case; the total energy released is ETj(m,/T,); which for large masses is less than 10s3 erg 
since i < 1 

In addition to the mass threshold effects, with massive neutrinos (m, 2 k) we must now 
take into account the loss of any photons produced inside the envelope of the supernova, 

&, = 100~ sec. Thus, we require that t& > &“, or 

E>E,,=mu/l+(~~‘u). (21) - 
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Note that E,, > m,, so this supersedes the requirement that E > m,,, but the re- 

quirement that E > k remains. Thus, we must integrate over neutrino energies from 

Eh = max(k, E,,,). Th is integral, the equivalent of h(k/T) above, cannot be done in 

closed form, but again it can be approximated by a gaussian (at least for the isotropic case 

f UC k) = VP): 
dN 120 ET 2k _ 

-= 
dk dt -$&j (my/TV) 7;;4Fme ‘““““‘s(GdT) 

” Y 
(22) 

with 

g(x) = lrn dy * N $zWo.zz2; (23) 

the factor of 0.2 in the exponent approximates the shape of the integral for x s few. This 
differs from the massless case by a total suppression factor 

j b-b/w 9 &dT) 

WT) 
21 exp [-O-I5 (F)‘-0.2 (+)‘I (24) 

Since Eh 2 my, this is always less than exp[-0.35(my/Ty)2] for interesting masses m, 2 TV; 
unfortunately, the time now appears in the expression for Ed, so the dt integral is no longer 
trivial. First, then, let us consider the suppression factor if we ignore the effect of decays 
inside the supernova envelope, integrating from Eh = max(m,, k). Then the time integral 
can be done as in the low-mass case, and we can simply write down the time-independent 
suppression factor s = j(m”/T)g(&/T) N j(m,/T)g(m,/T) (if we first set h(k/T) = 1 
when numerically calculating the limits as above). 

These mass effects enable us to break the degeneracy between m, and 7, at the price of 
requiring the more complicated analysis of a three-dimensional parameter space. To simplify 
matters, we will base the results for massive neutrinos directly on the limits from the low- 
mass case. That is, we will calculate the limits as before, and then apply the suppression 
factor at the end. We can do this because the suppression factor comes into the expression 
for the flux in exactly the same way as the branching ratio B,, so we translate limits on B7 
in the massless case to limits on B7 x s, where s is the k-independent part of the suppression 
factor. In addition, we do the calculation for an isotropic decay, and assuming k < m,. For 
two-body decay, this results in the limit 

sB, < 3 x 1O-7 rn,T 5 lo6 keV set 

sB7 < 6 x lo--l4 muT 
keV set 

rn,T 2 lo6 keV sec. 

If we allow the effect of decays inside the progenitor envelope, the calculation is somewhat 
more complicated, and the integral over each time bin can no longer be done in closed form. 
We must now recompute everything at each pair of m, and r. We show the results of such a 
calculation for several values of the neutrino mass in Figure 6; the limits are not too different 
from those with the simpler time-independent suppression. 

For the bremsstrahlung process, the suppression of a high-mass neutrino flux is simpler _ 

to calculate because the required integral is simply J dE EL#(E), the total energy in the 
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massive neutrino species (cf. Eq. 18; we have again assumed k << T, so the initial integral 

over ~1 simplifies). Again, we integrate from the same Ek = max(k, E,,,); the suppression 
is given by the Boltzmann factor j(Ee/T). F or much of parameter space, this is simply 
the expected j(m”/T). Again, the time-dependence of E,,, does not change the limits 
significantly. The allowed parameter space for the bremsstrahlung process for a mass of 30 

MeV is 

n-w, 

jh/T) 
> 1.5 x 10” keV set or j(mlT) 2 < 7 x lo-l3 keV-’ set-‘. (27) 

Y 

VI. NEARLY DEGENERATE NEUTRINOS 

Thus far, we have assumed that the daughter neutrino in the v + v’r channel is much 
less massive than the parent neutrino. If, however, the mass of the daughter is appreciable, 
the energy of the photon will be decreased by a factor Sm*/m* E (mf - mi)/m:. This may 
improve our limits: It would shift the bulk of the photons down from energies too high to 
detect into one or more of the energy channels of the PVO detector. For massless daughter 
neutrinos, of order l/lO.of the photons can be detected; therefore we might expect limits as 
much as an order of magnitude stronger. In fact, for this case, the lower energy window of 
the PVO detector, down to 0.1 MeV, compared with the SMM window, sensitive only above 
4.1 MeV, is actually an advantage. 

To make the matter more precise, we see that in the case of nearly degenerate neutrinos, 
we make the change 

f (E, k)dk + f [E, (m’/~m’)k](m’/~m’)dk 

where we now are contrained to have photon energies k < (6m2/m)E. This, in turn, results 
in changing h(k/T) + (m2/6m2)h[(m2/~m2)kc/T] x (m*/6m”)h(k/T), up to a constant of 
order one. As expected, the flux is enhanced by a factor of (m2/6m2) at most energies, so 
we can make the substitution B7 -+ B7(m2/6m2) in our limits. 

In particular, we are interested in two regimes of 6m2/m2. To account for the recent 
evidence of a neutrino mass eigenstate, we set m = 3 eV [lo]. The most attractive solution 
to the solar neutrino problem requires 6m2 = 3 x lo-’ eV2, so 6m2/m2 = 3 x 10m6 [ll]. 
To account for the atmospheric V~ deficit, 6m2 = 1 x lo-‘eV2, so 6m2/m2 = 1 x 10m3 

[ 121. Roughly, we see that our limits will become stronger by factors order 3 x 10’ and 103, 
respectively. In Figure 5, we show the limits on the neutrino parameters for these two cases. 

VII. LONG LIFETIMES 

For long lifetimes (such that the average decay time of the neutrino is comparable to or 
longer than the travel time to the detector), the above formalism becomes too cumbersome, 
because we must integrate over a complicated set of possible paths for the neutrino and 
daughter photon. In this case, we will make several simplifications. At first, we will only 
concern ourselves with the total gamma-ray fluence from the decays, integrated over time. _ 
Then, we will integrate over the decay time, 0 < td < D: 
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dN By 

dlc = 4aD2 
- / dE L#(E)f(E, k) [l - e-Dm,‘Er] 

where, as before, f(E, k) g ives the fraction of neutrinos with energy E decaying into photons 
with energy k. This expression is to be compared with those presented in [2]. The cost of the 
simplicit!- of this expression is the inability to determine the exact time of a photon’s arrival. 
For neutrinos and photons travelling on a straight path (II = 1, appropriate for relativistic 

particles), the arrival time after the supernova light-pulse is t = td(l - v) N (td/2)m2/E2. 
For long lifetimes, we will be concerned with neutrinos that decay late in their flight: td - D. 
Using this as a typical e-folding time, we have the ansatz that (dN/dt) 0: exp ( -2tE2/DmE) . 
For t 2 (D/2)mZ/E2, th is should express the character of the time-dependence. Two effects 
are explicitly missing from this formula: the extra time delay from non-straight paths (of 
the same order as the delay already considered) and the photon energy dependence of the 

time-delay-. Moreover, the time-dependence will not have exactly this shape; for short times 
it does not contain the expected slow rise from zero flux, so it is probably safest to use this 
formula integrated over the entire duration of the experiment, and not rely on the detailed 
time evolution, leaving us finally with 

fl,- Z&J dE L#(E)f(E, k) (1 - e-26tE2’DmZ) (1 - eSDmwIEr) . 

Unfortunately, the integration over neutrino energy E is considerably more complicated than 
before, but we can approximate the two exponential decays for various regimes: 

( 
1 _ e-26tE2/DmZ 

>( 
1 _ e-DmvlEr 

> (31) 

m 5 E 2&/D, my/r 2 E/D 

$-. mu/r 2 E/D m 2 E 2&/D, 

m 5 E 2&/D d-, mu/r 5 E/D 

m 2 EJ26tlD, m,/r 5 E/D. 

Numerically, these breaks occur at 

m N E d- 2&/D N- 680 eV m,/r N E/D N 2 x 10m6 eV/sec12 Eev. 

where E = 12 MeV is a typical energy for a T, = 8 MeV blackbody. In terms of the 
lifetimes, the latter limit occurs at 7 21 Dm,/E z 5 x lo5 set (m,/eV)-for masses m, - 1 
MeV, this is roughly 7 - D. When this is proportional to 6t, the flux is approximately 
constant; otherwise, the entire pulse is detected (and its shape is irrelevent). Putting all of 
this together, and doing the integral over E gives 
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dN B7 120 

dk St 

z--x 
4~0~ 7r4 

, 

2 $$h2(k/T) 
Y (33) 

where h,(y) = JyoO P+’ /( 1 + exp z) is similar to h(y) a b ove, and the four cases correspond 

to those in Eq. (31). H ere, we have assumed an isotropic distribution of decays in the 
rest frame. As before, these expressions hold for m v 5 T, and must be modified with the 
appropriate suppression factor otherwise. 

Now, we can just put these results through our statistical machinery and find limits on 

the parameters. We will write the flux as 

dN 
- 
dk 6t 

M ---&f$gh(k/T) x B-,A(m,,T) 
Y 

where A is the appropriate dimensionless combination of m, and 7, along with D, T, and 
6t; the data give us limits on A in each (m,,T) regime (assuming that we can write our 
prior information as a simple probability distribution for A). This gives an approximate 
99% confidence limit of B,A 5 1 x 10e6 for T, = 8 MeV or, 

m, 5 0.4 keV, mu/r 2 1.2 x lo-’ keV/ set; 

m y 2 155 keVBti2 mu 2 0.4 keV, m,/r 5 1.2 x lo-’ keV/ set; 

Bymu 
5 1.4 x 10-l’ keV set-’ m, 5 0.4 keV, m,/r 2 1.2 x lo-’ 7 keV/ set; 

m,r 2 1.4 x 1014 keV secB, 
T, -’ 

( > 
- 
8 MeV 

m, 2 0.4 keV,m,/r 5 1.2 x lo-’ keV/ sec. (35) 

Where the regimes overlap, these limits are comparable to those calculated with the more 
detailed models above-because we can only calculate limits on parameters, the details 

of the data and the analysis are unimportant (in fact, the limits of Eq. (35) are stronger 
than, for example, Eq. (13) b a ove; the earlier, more detailed calculation is probably the 

more appropriate limit). Again, for neutrinos with m, rv > T,. these limits are modified with , 

B-, + sB,. 
For the bremsstrahlung channel, the flux is changed due to the different kinematics of 

the decay (i.e., the rest frame spectrum of Eq. (16)): 

dN a 2T2 dN 

dlc 
=-Lx- 

brem T km, dk 2-body 
(36) 

(in addition, the functions h, should also be modified to h n+2). This is a significant increase 
in flux at for km, - < T2. As before, we see that the bremsstrahlung spectrum at the detector _ 
is proportional to l/k. Now, the limits correspond to B,AT/m 5 3 x 10S5 or 
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m, 5 0.4 keV,m,/r 2 1.2 x lo-’ keV/ set; 

m, 2 0.4 keV, m,/T 5 1.2 x lo-’ keV/ set; 

T/B, = 7, 2 1.9 x 1016 set m, 5 0.4 keV,m,/r 2 1.2 x lo-’ keV/ set; 

my 2 1.4 x 10’ keV (%)-‘I2 (&) m, 2 0.4 keV,m,/r 5 1.2 x lo-‘keV/ sec. (37) _ 

VIII. DISCUSSION 

SN1987A not only confirmed astrophysicists’ standard model of the Type II (core col- 
lapse) supernovae, but also provided a laboratory for studying the properties of neutrinos. 
The fluence of neutrinos at earth was approximately 10”cm-2 per species. This large flu- 
ence and the space-borne gamma-ray detectors operating on SMM and PVO have allowed 
stringent limits to be placed on the radiative decay of neutrinos. 

Although there is only 232 seconds of data, in a single time bin, the SMM detectors 
were sensitive up to energies of 25 MeV, and so would have more likely to detect gamma 
rays from decaying SN1987A neutrinos with a temperature of 4-8 MeV. Because the limits 

are determined by the region of parameter where the background becomes comparable to 
the signal (see the discussion in Sec. III above), the long time base and greater resolution 
is actually of little use in determining the limits on the parameters. To show this, we have 
performed our analysis with the SMM data as presented in [4], using crude estimates of the 
response matrix and effective area of the detector. As expected, the results are comparable 
to, although slightly weaker than, those quoted in that reference. However, in the case 
where the gamma rays are produced by bremsstrahhmg or the neutrino mass states are 
nearly degenerate, the PVO limits are comparable or more stringent. Finally, the amount 
of and quality of the PVO data adds additional confidence to the SMM-based limits. 
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FIGURES 

0 2000 4ooo woo woo 

UT - 27325 [SW] 

FIG. 1. The PVO GBD data for the time immediately before and after the arrival of the light 
from SN1987A at the PVO spacecraft (UT = 27325). Time bins are either 12 or 16 set; we show 
the average counts per second in each bin, for each energy channel, as marked. 
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FIG. 2. The value of the x2 statistic, defined in the text, as a function of the parameter mvr, 

for values of the branching ratio B, as marked, for the decay process v + v’y. 
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FIG. 3. Allowed region of the m,r-B, plane, for the 2-body decay process Y + ~‘7, corre- 
sponding to Ax* 5 2357 (see text). Here and below, contours continue to infinity as long as the 
appropriate assumptions, discussed in the text, still hold. 
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.-~L..*y.e, ..u. J 

FIG. 4. The value of the x2 statistic, defined in the text, as a function of the parameter 
m,r, = mvT/Bc, for the bremsstrahlung process. Also shown is the location of the Ax* 5 2357 
limit. 
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FIG. 5. Allowed region of the rn,T-B? plane, for nearly degenerate neutrinos, with 
6m2/m2 = 10S3 (“atmospheric”), 3 x lOA (“solar”), as well as 6m2/m2 = 1, as labelled. 
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FIG. 6. Allowed region of the m,r-B, plane, for neutrinos of mass 20 MeV, 30 MeV, and 
40 MeV (from left to right), for the 2-body decay process, corresponding to Ax* 5 2357 (see text). 
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